Analisis Dan Strategi Algoritma (ASA)

ALGORITMA DIVIDE AND CONQUER - Pertemuan 11

Nama    : Geyma Vancha Risma
Npm      : 20312093
Kelas     : IF 20C

Sejarah divide and conquer Divide and Conquer dulunya adalah strategi militer yang dikenal dengan nama divide ut imperes. Sekarang strategi tersebut menjadi strategi fundamental di dalam ilmu komputer dengan nama Divide and Conquer.

pengertian :

  • Divide: membagi masalah menjadi beberapa upa-masalah yang memiliki kemiripan dengan masalah semula namun berukuran lebih kecil (idealnya berukuran hampir sama),
  • Conquer: memecahkan (menyelesaikan) masing-masing upa-masalah (secara rekursif), dan
  • Combine: mengabungkan solusi masing-masing upa-masalah sehingga membentuk solusi masalah semula.
Obyek permasalahan yang dibagi : masukan (input) atau instances yang berukuran n seperti: - tabel (larik), - matriks, - eksponen, - dll, bergantung pada masalahnya. Tiap-tiap upa-masalah mempunyai karakteristik yang sama (the same type) dengan karakteristik masalah asal, sehingga metode Divide and Conquer lebih natural diungkapkan dalam skema rekursif. Perkembangan Algoritma Divide and ConquerAlgoritma divide and conquer sudah lama diperkenalkan sebagai sumber dari pengendalian proses paralel, karena masalah-masalah yang terjadi dapat diatasi secara independen. Banyak arsitektur dan bahasa pemrograman paralel mendesain implementasinya (aplikasi) dengan struktur dasar dari algoritma divide and conquer. Untuk menyelesaikan masalah-masalah yang besar, dan dibagi (dipecah) menjadi bagian yang lebih kecil dan menggunakan sebuah solusi untuk menyelesaikan problem awal adalah prinsip dasar dari pemrograman/strategi divide and conquer.
Divide and conquer adalah varian dari beberapa strategi pemrograman topdown, tetapi keistimewaannya adalah membuat sub-sub problem dari problem yang besar, oleh karena itu strategi ini ditunjukkan secara berulang-ulang (recursively), didalam menerapkan algoritma yang sama dalam sub-sub problem seperti yangditerapkan pada masalah aslinya (original problem). Sebagaimana prinsip dasar algoritma perulangan dibutuhkan sebuah kondisi untuk mengakhiri perulangan tersebut. Biasanya untuk mengecek apakah problem sudah cukup kecil untuk diselesaikan dengan metode secara langsung. Mungkin dari segi ilustrasi kita, bahwa proses-proses pada komputer paralel tentunya memiliki proses/problem/job yang cukup kompleks sehingga harus dipecah-pecah menjadi sub-sub problem. Selain dibutuhkan sebuah “kondisi”, juga diperlukan “fase divide” untuk membagi/memecah problem menjadi sub-sub problem yang lebih kecil, dan “fase combine“ untuk menggabungkan kembali solusi dari sub-sub problem kedalam solusi dari problem awalnya.


Pseudocode diatas adalah sebagai acuan dari strategi divide and conquer, tetapi dalam implementasinya ada beberapa diferensiasi dari bentuk diatas yang akan digunakan. Sebelum masuk ke pokok pemrograman dengan “Divide and Conquer strategy/algorithm”, ada 4 hal penting yang harus dipahami dalam strategi ini yaitu branching factor, balance, data dependence of divide function dan sequentiality.

Branching Factor

Branching factor dalam algoritma divide and conquer adalah jumlah dari subproblem yang akan dibagi dari sebuah problem awal. Ini adalah langkah nyata dari algoritma divide and conquer, didalam proses pembagian yang sebenarnya, jumlah dari branching factor harus 2 atau lebih, karena jika tidak problem tidak bisa dibagi. Banyak jenis algoritma ini termasuk pula algoritma komputasi geometric yang memiliki branching factor berjumlah 2.

Balance

Sebuah algoritma divide and conquer dikatakan balance jika problem awal dibagi menjadi sub-sub problem dengan ukuran yang sama. Yang artinya jumlah dari keseluruhan ukuran subproblem sama dengan ukuran problem awal (initial problem). Algoritma Mergesort dan binary tree, dan sama halnya dengan algoritma reduksi & prefix sum adalah beberapa contoh algoritma divide and conquer yang seimbang (balance).

Data Dependence of Divide Function

Algoritma divide and conquer memiliki sebuah fungsi pembagian terhadap data yang memiliki ketergantungan, artinya jika ukuran relatif dari sebuahsubproblem tergantung pada proses input datanya. Ini adalah salah satu ciri dari algoritma yang tidak seimbang, salah satu contohnya adalah algoritma quicksort yang akan membagi subproblem dengan fungsi data-dependent divide.

Control Parallelism or Sequentiality

Algoritma divide and conquer dikatakan berurutan (sequential) jika subproblem dieksekusi sesuai dengan perintah program. Paralelisasi dari algoritma divide and conquer yang terurut pertama kali didefinisikan oleh Mou’s Divacon[Mou90], yang terjadi ketika hasil dari salah satu sub-eksekusi diperlukan oleh subeksekusi yang lain. Dalam kasus ini hasil dari subtree pertama diberikan (passing) kepada proses komputasi subtree kedua, supaya hasil akhir tersebut bisa digunakan sebagai nilai awalnya, tetapi sekarang ini contoh diatas tidak dapat dijadikan ilustrasi lagi karena teknologi komputer paralel yang semakin canggih dan kompleks.

Klasifikasi dari Algoritma/Strategi Divide and Conquer


Berikut klasifikasi algoritma divide and conquer, kita bisa melihat daftar dan karakteristik dari beberapa algoritma yang ditunjukkan dalam tabel :

Tabel karakteristik dari Algoritma divide and conquer. Catatan bahwa quicksort

dan quickhull bisa dikonversi kedalam algoritma yang balance dengan cara

menemukan median (titik tengah) yang tepat.


Penerapan Data-Parallel Divide and Conquer Algorithms

Sorting

Quick Sort, Binary Sort

Computational Geometry

Closest Pairs, Convex Hull, Delaunay Triangulation

Graph Theory

Travelling Salesman Problem (TSP), Graph Separators

Numerical

Matrix Multiplication, FFT

Not Data Parallel

Naïve Merge Sort


Rekursi Divide and Conquer

Machiavelli menggunakan sintaks : Split (result1 = func (arg1), result2 = func (arg2) [, resultn = func (argn)]) Untuk membentuk fungsi call dalam algoritma divide and conquer. varn adalah hasil akhir yang kembali ke fungsi func dalam argument argn. Machiavelli membuat versi fungsi yang salah satunya mengaplikasikan reduksi menjadi sebuah “pengulangan sederhana”.


Kesimpulan :

Algoritma divide and conquer sudah lama diperkenalkan sebagai sumber dari pengendalian proses parallel, karena masalah-masalah yang terjadi dapat diatasi secara independent. Banyak arsitektur dan bahasa pemrograman parallel mendesain implementasinya (aplikasi) dengan struktur dasar dari algoritma divide and conquer.

Divide and Conquer secara umum terbagi dalam tiga fase, divide yakni membagi masalah kedalam sub-sub masalah yang lebih kecil, conquer yakni menyelesaikan sub-sub masalah secara rekursif, dan combine menggabungkan hasil dari penyelesian sub-sub masalah menjadi penyelesaian yang dikehendaki Terdapat empat hal pada strategi “divide and conquer” : branching factor, balance, data dependence of divide function dan sequentiality.








Komentar

Postingan Populer